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Direct tensile fatigue data of both normal and lightweight concrete have been analysed with a 
statistical time-dependent fracture theory. Although originally developed for single-phase 
materials, the theory gives quite good agreement with experimental results for two reasons. 
One is that the inhomogeneous properties of concrete have been included in the statistically 
determined Weibull parameters, so that it can be treated as a pseudo-homogeneous material. 
The other is that at low stress ratios, less than 0.2, the basic crack growth law, whether it is 
due to environmental effect and/or fatigue-induced damage, can be represented by a single 
equation: a = AK n where (A, n) are equivalent parameters for the two crack mechanisms. For 
high stress ratios the crack velocity, a, cannot be represented by a single equation and the 
statistical fracture theory breaks down under these situations. 

1. In t roduct ion  
Strength degradation due to environment-assisted 
slow crack growth has been widely accepted in the 
explanation of time-dependent fracture of brittle 
materials under constant sustained loadings and of the 
stress rate effect on strength [1-6]. A pre-existing flaw 
in a brittle material will extend to its critical length 
under a sustained load according to a particular slow 
crack growth law (i.e. Equation 5) which leads to 
eventual failure. In high stress rate experiments in the 
laboratory, the strength of a brittle material is deter- 
mined by its pre-existing flaw distribution because 
there is not enough time for slow crack growth to 
occur. But the situation is different in low stress rate 
testing. In this case the strength is controlled by a flaw 
distribution whose average length is bigger than that 
of the pre-existing flaw distribution, because slow 
crack growth can now take place. Therefore, a stress 
rate effect on strength is shown. Based on a single- 
crack consideration a time-dependent fracture theory 
has been developed [2-6], and extensively used in 
the time-dependent fracture analysis of glasses and 
ceramics. 

It has been shown that cementitious materials such 
as cement paste, mortar and concrete are also subjected 
to time-dependent fracture [7-10]. But as distinct fi'om 
glasses and ceramics, cementitious materials, especi- 
ally concrete, are very inhomogeneous in structure. 
Nadeau et al. [7], as well as Baldie and Pratt [11] have 
found that the slow crack growth parameters (i.e. A 
and n of Equation 5) of a hardened cement paste are 
not constant as they are supposed to be.This 
phenomenon is seldom observed in ceramic materials. 
Microscopy study of  fracture in hardened cement 
pastes shows a tortuous crack path around unhy- 
drated cement grains which effectively bridges the 

crack faces. Crack branching also occurs. We have 
found [12] that changes in the slow crack growth 
parameters can be contributed by the bridging fibres 
over cracks in a short-fibre reinforced cement, or 
by the tough second-phase particles impeding cracks 
in a two-phase material. Using the equivalent crack 
growth parameters (A, n) obtained by disregarding the 
structural inhomogeneity and the resistance of the 
second-phase particles to crack growth, lifetimes of a 
two-phase material under constant loads can be 
predicted from the results of constant stress rates. This 
conclusion indicates that the time-dependent fracture 
theory proposed for brittle isotropic and homogeneous 
materials can be applied to mortar and concrete as far 
as lifetime prediction is concerned. Indeed from a 
statistical viewpoint it is not unreasonable to assume 
these cementitious materials to be macroscopically 
isotropic and homogeneous. 

The single crack approach to cyclic fatigue in brittle 
materials has been performed by Evans and Fuller [13] 
based on the environment-assisted slow crack growth 
analysis. Such an approach is inadequate for other- 
wise smooth specimens subjected to non-uniform 
stress fields. To overcome this problem we have devel- 
oped a statistical time-dependent fracture theory [14] 
by considering a time-dependent flaw distribution, 
and successfully applied it to a soda glass and a poly- 
crystalline alumina. It is proven that the lifetime or 
number of cycles to fracture of glass and alumina 
under cyclic loading can be predicted in terms of the 
slow crack growth parameters obtained under sus- 
tained loading conditions. Therefore, crack growth 
mechanisms are identical in cyclic and in sustained 
load situations. Cyclic fatigue-induced damage is 
insignificant in these materials. Recently, Tait [15] has 
shown that in dry mortar the equivalent crack velocity 
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under cyclic loading can be accurately predicted from 
crack velocity data obtained for constant sustained 
loading. Moreover, the cyclic crack velocity is inde- 
pendent of fatigue frequency. These results seem to 
suggest that crack growth is basically a time-dependent 
phenomenon with identical mechanisms for both cyclic 
and sustained loads. Provided the equivalent par- 
ameters (A, n) are obtained for the inhomogeneous 
mortar,  it can be treated as if it were a single-phase 
homogeneous material .  Thus, our statistical time- 
dependent fracture theory is expected to apply to 
mortar. Concrete is more complex in structure and we 
wish to investigate if and under what conditions 
our statistical fracture theory can apply to predict 
lifetimes of these concrete materials. In particular we 
wish to determine if fatigue-induced damage exists in 
concrete. 

2. Theoret ica l  basis 
The most accepted statistical theory used in the analy- 
sis of  fracture strength of brittle materials is Weibull's 
weakest link theory [16, 17]. In a two-parameter form 
the theory is given by 

F(cr) = 1 - exp - V (1) 

with m and % to be determined. From Griffith's 
theory it is known that the strength of a brittle 
material can be related to the fracture of  the most 
critical flaw in the material. Hence, the weakest link 
theory could be devolped from flaw statistics, and the 
strength distribution of Equation 1 could be related to 
the flaw size distribution q(a) in the material. 

Hunt and McCartney [18] have shown that for 
volume distributed flaws the failure probability at 
stress cr is given by 

E :  7 F(a) = 1 , exp V ,{~1 q(a) da (2) 

under the assumption that the material is subjected to 
uniaxial tension, a(o-) is given by Gritfith's theory 

= ( 3 )  

where Y is a geometry factor. If  q(cr) is described by a 
Pareto distribution 

} " ao ~< a 
q(a) 

0; a < a o 

(4) 

where a0 is the smallest flaw size. Equation 1 can be 
obtained by integrating Equation 2. 

To study the time-dependent fracture, we assume 
that all pre-existing flaws in a brittle material will 
propagate in accordance with a slow crack growth 
law. The most common equation used to describe the 
environment-assisted slow crack growth in brittle 
materials is [19, 20] 

da 
- -  AK" = A(aYa'/2) " (5) 

dt 
where da/dl is the crack growth velocity, and (A, n) 
are numerical constants depending on the particular 
material-enviromnent system. 

The growth of flaws within the stressed volume, V, 
alters the flaw size distribution from q(a) [= q(a, 0)] to 
q(a, t). Thus, according to Equation 2, the failure 
probability at time t is given by 

expE ] 
It has been proven that [14] 

f£~i q(a, t )da  = f£]~,,#(a) da (7) 

where at(a, t) is related to a(a) by 

f"(~ ,,/2 da = fl A(aY)" dt (8) 
r(fTJ) a 

Thus, the integral in Equation 6 can be evaluated. 
We first consider the stress-rate effect in uniaxial 

tension and assume O-(l) = d t  where 6 = constant. 
From Equations 6 to 8, we have 

F(dt, t) = 1 -- exp -- - -  
~rJ 

× 1 + 2(n + 1~ Ay2K'~c 2(6t)2t 

, {- 
(n - 2) 7m..'(n 2) ] 

2 ~  7F ]-) A y2K~'c-2 (9) 
× (a,)2,j i 

The approximation holds when the slow crack growth 
effect becomes signifcant. The equation can also be 
expressed in the relation of strength against stress rate, 
i.e. 

1 
log % - - - l o g 6 -  

n +  1 

+ n + 1 l°g CT l n i ~ ]  J 

(lO) 

where CT is a constant given by 

2(n + 1)cr~ 2 
- -  2 ) A  Y-K~ - (I 1)  

We now consider the time-dependent fracture under 
a cyclic stress situation. There are generally two types 
of  cyclic stresses. One is O-(t) = % sin cot in rotation, 
the other is O-(t) = 6 + % sin cot in either tension or 
bending. If  cyclic fatigue-induced damage can be 
neglected in cementitious materials, as shown by Tait 
[15], the crack growth due to cyclic loading can be 
obtained from Equation 8 by considering the timer 
dependent applied stress a(t) and flaw statistics. Con- 
sider specimens of volume V under a tensile cyclic 
stress. We have 

O-(t) = 6 + % sin cot 

= 6(1 + ~" sin cot) (12) 

where0 < ~ < l. From Equations 6, 8 and12,  i tcan 
be shown that 

F(a, t) 1 -  e x p {  k, (O-O_T ]~"' 
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Figure 1 Influence o f n  and { on G*. 

X 
( ( n -  2) [ G(n, ~) ]~m,V, 2,'~ 

1 4- ~ Ay2KI'~-2O-~,,~t (1 4- ~)"J/' J 
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Here 

(13) 

0-max ---~ G 4- o-c (14) 

1 
G(n, ~.) = t f~ (1 4- ~ sin o9t)~dt (15) 

Again, the simplified relation in Equation 13 holds 
when the slow crack growth effect becomes important. 
Equation 13 can be further simplified, so that 

1 m 
log In 1 - - ~  - n -- 2 1 ° g N  

m {o-~m~[ G(n'~)~](l 4- n)} (16) 4- log 
n - - 2  ~ ( 1 +  

where N (= f t ,  f be ing  the frequency) is fatigue life in 
number of cycles. Let 

G(n, ~) 
G,(n, ~) - (1 + ~-)n (17) 

and this function is shown in Fig. 1 for 0 < { < 1 and 
20 < n <80. 

If n and CT are determined (Weibull modulus rn is 
determined from high stress rate inert strength tests) 
from constant stress rate tests using Equation 10, then 
the fatigue life under a cyclic stress is predictable from 
Equation 16. 

Similarly, the lifetime relations due to a constant 
stress rate and a cyclic stress can be obtained for 
rectangular specimens of volume-distributed flaws 
under pure bending. Thus we have 

1 1 
logo-r -- - -  log& + - -  

n + l  n + l  

x (r~ ~- 1)7-n ~ -2) (18) 
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Figure 2 Tensile strength of plain concrete replotted from Saito and 
hnai [21]. 

for a constant stress rate condition. Here CB is a 
constant and given by Equation 11 with o-v = O-B" 
Also 

1 m 
logln  1 - - ~  - n ~ l ° g N  

m ~O~ax [ G(n,~)](n 4- 1) 
+ ~ l o g  ( G f k ( 1  +-~" 

[ mn 4 - n - 2  1 ("-2)'m} 
× (fi - 2) 1) (19) 

for a cyclic stress condition. 

3. Comparison of theory wi th direct 
tensile fatigue data of concrete 

Saito and Imai [21] performed a series of direct tensile 
fatigue experiments on plain concrete. The concrete 
was made using crushed stone with maximum size of  
20mm, river sand and ordinary Portland cement. 
The ratio of the minimum dimension of the tensile 
specimens to the maximum size of coarse aggregate 
was 3.5. The water-cement ratio, sand-cement ratio 
and cement content were 0.54, 0.47 and 350kgm 3 
respectively. The portion of the concrete specimen 
under uniform tension has a volume of  160 x 100 × 
70 mm 3. All specimens were cured in water for 8 to 9 
weeks at 21 ° C. The frequency used for the cyclic tests 
was 240 c.p.m. 

The results of the direct tensile strength of fast 
fracture are shown in Fig. 2. It is found that there is 
substantially no difference in the tensile strengths 
between specimens cured for 8 and 9 weeks. Thus all 
results are used in Fig. 2 to get a better estimation of 
the Weibull parameters. It is found that 

1 
In In - 20.27 In ~r - 24.833 (MPa)(20) 

I - F  

Thus, the Weibul! modulus for this plain concrete is 
20.27. 

The cyclic stress used by Saito and Imai [21] has the 
form 

a(t) = 1.666[(S 4- 0.08) 

+ (S - 0.08) sin (2~ft)] (MPa) (21) 

where S = a ..... /o0.s and a0.5 is given by Equation 20 
with F = 50%. The values of S used are 0.75, 0.775, 
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Figure 3 Cyclic fatigue of plain concrete after Saito and lmai [21]; 
( ) best fit; ( -  - - )  predictions; S = (v)  0.875; ( 0 )  0.825; (o)  
0.8; (A) 0.775: (ll) 0.75. 
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Figure 4 Cyclic fatigue of lightweight concrete after Saito [22]; 
(- ) best fit; ( - - - )  predictions; S = ( - )  0.919; (11) 0.871;(O) 
823; (A) 0.774. 

0.8, 0.825, 0.85 and 0.875 (or 0.807 < ~ < 0.833). 
Equation 16 is applied to the data o f S  = 0.8 because 
the maximum number of specimens were tested at this 
stress condition. It is found that 

1 
log In 1 ~  F - 0.515 log N - 2.435 (22) 

so that m / ( n  - 2) = 0.515. Because m = 20.27, we 
have n = 41.36 which is the stress corrosion exponent 
of  Equation 5. 

Predictions of lifetimes, N, according to Equation 16 
for stress conditions of  S = 0.75, 0.775, 0.825 and 
0.875 are shown in Fig. 3 together with the experi- 
mental results. The agreement is not unreasonable. 

Similar tensile fatigue experiments on lightweight 
concrete were also performed by Saito [22]. Dimen- 
sions of  samples and curing conditions were kept the 
same as those of  plain concrete [21]. The coarse 
aggregate was a round type with 15mm maximum 
size. The ratio of  the minimum dimension of the ten- 
sile specimens to the maximum size of  coarse aggre- 
gate was 4.67. The water-cement  ratio, sand-cement  
ratio and cement content were maintained at 0.50, 
0.45 and 348kgm  -3, respectively. Again the fre- 
quency used for the cyclic stress was 240 c.p.m. Values 
o r s  used in Equation 21 were 0.919, 0.871, 0.823 and 
0.774, respectively (or 0.812 < ~" < 0.840). 

Fatigue results of  lightweight concrete are shown in 
Fig. 4. Applying Equation 16 to the data of  S = 
0.919, we find that 

1 
log ln  1 - F - 0.758 l o g N -  2.435 (23) 

Unfortunately, only the average tensile strength of 
fast fracture was provided so the Weibull modulus 
cannot be worked out in terms of Equation 1. But if 
the same value of n as that of  the plain concrete is 
assumed for the lightweight concrete (so that m is now 
determined), predictions from Equation 16 agree very 
well with the fatigue data. Alternatively, two sets of  
data for two different S can be used to fit Equation 16 
and the values of  m and n solved simultaneously. This 
gives n approximately equal to 40 which is close to the 
assumed value 41.36. 

4. Discussion and conclusion 
The reasonably good agreement between the theoreti- 
cally predicted lifetimes and experimental results 
suggests that the fracture statistics together with the 
simple crack growth model can be applied to both 
plain and lightweight concrete despite their highly 
inhomogeneous structures. However, it should be 
pointed out that the successful application of this 
theory originally developed for single-phase homogen- 
eous materials to heterogeneous concretes has its 
empirical feature because cracks in these latter 
materials are most likely to be stabilized by sands and 
aggregates. Thus the Weibull parameters obtained 
through Equations 1 to 4 can only be taken as stat- 
istically averaged flaw characteristics. The same argu- 
ment holds for the parameters (A, n) in the crack 
growth law of Equation 5. 

Because the same theory gives reasonable predic- 
tions for both plain and lightweight concrete, and the 
stress corrosion exponents, n, are the same for both 
materials, it can be concluded that the fatigue mechan- 
ism is identical in both materials. This conclusion can 
only be true if the slow crack growth is mainly confined 
within the cement matrix or the matrix aggregate 
boundaries. The similar matrix constituents used in 
both materials seem to support  this argument. Unlike 
Tait [15], we cannot conclude that the time-dependent 
fracture of  the plain and lightweight concrete under 
cyclic stress conditions is purely due to the environ- 
mentally assisted slow crack growth indicated by 
Equation 5. To do so we need to be able to predict the 
cyclic fatigue results from either constant stress rate or 
constant sustained stress data. This is done by Tait for 
mortar  [15] meaning that cyclic fatigue-induced damage 
is negligible. 

For concrete the picture is not clear; but there is 
evidence that cyclic fatigue-induced damage has 
occurred in plain concrete beams [23] subjected to 
pure bending (see Fig. 5). For a given maximum stress, 
Equation 19 shows that the smaller the stress ratio 
R(= O'min/O'max) the longer the fatigue life. However, 
Fig. 5 shows the opposite trend. In this case Equation 
5 needs to be modified to 

da 
- A K " +  , f A ~ A K  n~ (24) 

d t  
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Figure 5 Effect of  the range of stress on the behaviour of  plain 
concrete under bending fatigue after Murdock and Kesler [23]. 

where the first term on the right-hand side is the crack 
velocity component due to environmentally assisted 
crack growth and the second term is that due to the 
cyclic fatigue-induced damage. If gmin ( < 0) is fixed in 
a cyclic fatigue, both mechanisms will increase the 
crack growth velocity with increasing gm~x. But if gmax 
is fixed and grain is reduced, the effect of the cyclic 
fatigue-induced damage will be enhanced while the 
effect of the environmentally assisted slow crack 
growth will be reduced. Whether the resultant crack 
growth velocity increases or decreases will depend on 
which mechanism has more influence than the other. 
This argument may explain why the tensile fatigue 
data [21, 22] (fixed O-min) agree with our present theory, 
while the bending [23] fatigue data (changing O'min) do 
not. Also, it can be seen from Fig. 1 that G,  is essen- 
tially a constant for { > 0.087 < R < 0.107. Under 
these conditions, Equations 16 and 19 both show that 
the fatigue lifetime only depends on gmax. In Fig. 5 
it can be seen that the bending fatigue life is inde- 
pendent of R if R < 0.2 (noting S = Omax/O-0. 5 and 
~r0 s = const.) and this is in agreement with the fact 
that G, is a constant. For R >~ 0.25 the lifetime N 
increases with R for any given S showing that the 
fatigue-induced damage effect is reduced. Neverthe- 
less such an effect does exist and Equations 16 and 19 
are incapable of accurate lifetime predictions. 

If the fatigue life N only depends on O'ma x ( s u c h  a s  at 
low R), no matter whether one or both crack growth 
mechanisms exist, it is possible to find equivalent A* 
and n* values to recast Equation 24 in the form of 
Equation 5. (At low R ratios, Equation 14 can be 
reduced to: a = A*K~× because the second term on 
the right-hand side is largely determined by ~r~,,x and 
hence Km~x. At large R-ratios, however, this second 
term depends on R and not gm~x (or Km~x) alone.)The 
tensile fatigue data for concrete in Figs 3 and 4 are for 
R = 0.1 and that both crack growth mechanisms are 
likely to have occurred. Thus, n (m40) determined 
from these data is, in fact, the equivalent n*. Lifetime 
predictions can therefore be made for different S using 
this value of n* as shown in these figures. 

The effect of cyclic-induced damage has also"been 
found in uniaxial tensile fatigue of concrete by Cor- 
nelissen and Reinhardt [24] although the effect is not 
as clear in reversed bending fatigue by McCall [25]. 
Thus fatigue life predictions exclusively based on the 
environmentally assisted slow crack growth for con- 

crete under cyclic stresses may have problems, especi- 
ally if a large fracture process zone is developed ahead 
of the crack, or if asperity contacts along the crack 
surfaces exist [26]. It is concluded, therefore, that in 
general both slow crack growth mechanisms due to 
environmental and cyclic fatigue effects need to be 
considered in the fracture of concrete subjected to 
cyclic loading. The simple statistical fracture theory 
applies only for low R-ratios, provided the equivalent 
fracture parameters m, n, A, CB or CT can be found. 
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